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A B S T R A C T   

Total mercury (T-Hg) was examined in 8 threadfin bream species (Nemipterus spp.) caught in the Gulf of Thailand 
(GoT). The T-Hg contents ranged from 11.3 to 374 μg kg− 1 wet weight, with the lowest in Nemipterus peronii and 
the highest in Nemipterus nemurus and Nemipterus tambuloides. Accumulation of T-Hg in fish tissue was found to 
be related to fish size, trophic levels, feeding habits and habitat. Threadfin bream caught in the upper GoT 
exhibited significantly (p < 0.05) lower T-Hg than those in the middle and lower parts of GoT, which possibly 
due to local mercury sources e.g., internal anthropogenic activities in the GoT and external from terrestrial input 
via river discharge. The estimated daily intakes were ranged from 0.03 to 0.07 μg kg− 1 bodyweight day− 1. All 
threadfin breams in the GoT have HQ <1. To prevent the associated potential risk, the maximum safe daily 
consumption is recommended at 95.3 g day− 1.   

1. Introduction 

Threadfin breams (Nemipterus spp.) are marine fish that usually live 
in the tropical and subtropical Indo-pacific areas with warm tempera
tures (Russel, 1993). It is one of the most caught fish species for both 
local consumption (Pangsorn et al., 2007) and export products, such as 
surimi (Siriraksophon et al., 2009). In Southeast Asian countries, the 
surimi production accounted for 347,000 metric ton in 2005, and 
Thailand was listed as the top production country, followed by Malaysia 
and Vietnam with the export amount of 150,000, 100,000 and 84,000 
metric tons, respectively (Siriraksophon et al., 2009). Threadfin bream is 
popularly consumed as it contains various nutrients such as amino acids, 
protein, fat, carbohydrates, minerals, vitamins, and selenium, an anti
oxidant beneficial for human health (Siong et al., 1987; Wiriyaphan 
et al., 2012; Tilami and Sampels, 2018). However, they may contain 
some toxic substances such as mercury (Hg) which is absorbed from the 
environment and linked to several diseases in humans e.g., neurological, 
renal, genetic and epigenetic outcomes, cardiovascular, and reproduc
tive outcomes (Kim et al., 2016). 

Threadfin breams are often used as an indicator species for moni
toring the change of mercury in the environment (Agusa et al., 2007; 

Saei-Dehkordi et al., 2010; Ahmad et al., 2015). This is because they are 
demersal carnivores and non-migratory fish that feed on benthic animals 
thus, allowing threadfin breams to be exposed to and accumulate local 
pollutants in their bodies (Ahmad et al., 2015; Anual et al., 2018; Mithun 
et al., 2018). In the environment, mercury is a naturally occurring 
element found in Earth's crust, atmospheric and volcanos (Driscoll et al., 
2013). Additional mercury in the Gulf of Thailand (GoT) is originated 
from various anthropogenic activities, both internal and external sour
ces. Those activities include deforestation, coastal erosion, and un
treated domestic waste (Cheevaporn and Menasveta, 2003; 
Worakhunpiset, 2018), untreated wastewater from industrial estate and 
petrochemical complex (Thongra-ar et al., 2008; Tremlová, 2017), oil 
and gas exploration in the GoT (Yod-In-Lom and Doyle, 2002; Pojtana
buntoeng et al., 2011; Rattanasriampaipong, 2016; Sompongchaiyakul 
et al., 2019), Coal-fired power plant (Thepanondh and Tunlathorntham, 
2020), gold mining activities along Mekong river (Murphy et al., 2009) 
and irrigation runoff form the agricultural practice using Hg-containing 
pesticide along the Lower Mekong River Basin (Guédron et al., 2014). 

In the aquatic system, dissolved mercury either in sediment or the 
water column can be transformed into methylmercury (MeHg) by 
anaerobic bacteria activity (Fuhrmann et al., 2021). MeHg accumulation 
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in fish was observed with an increase in fish size and the trophic level 
(Anual et al., 2018; Liu et al., 2019). MeHg is taken up and accumulated 
in the low trophic organisms and fish. Later, it is thoroughly bio
magnified to the higher trophic fish in the pelagic and benthic food webs 
(Liu et al., 2019). The high T-Hg level in muscle of demersal fish was 
observed especially in the high trophic fish (Ralston et al., 2019; Grgec 
et al., 2020). The Atlantic halibut, blue ling, common ling, common 
pandora, shark, swordfish, mako shark and tusk where the species 
contained T-Hg in muscle greater than the consumption allowance in 
standard guidelines (1 μg kg− 1 for predatory fish) (USEPA, 2000; Ral
ston et al., 2019; Grgec et al., 2020). 

Since threadfin bream is among the popular fish choices for Thai 
people, mercury biomagnification in the edible muscle from the sur
rounding environment is a concern. It is necessary to ensure that mer
cury levels should not exceed the edible allowance concentration (0.5 
μg kg− 1 for commonly fish and fishery products) in standard guidelines 
(USEPA, 2000) and exposure to mercury via fish does not pose any 
additional consumption risk. Although several studies reported mercury 
concentration in fish from the waters of Thailand (Cheevaparanapivat 
and Menasveta, 1979; Windom and Cranmer, 1998; Cheevaporn and 
Menasveta, 2003; Hantow et al., 2008; Worakhunpiset, 2018), there is 
only one report of mercury concentration in different threadfin bream 
species distribution in the GoT (Agusa et al., 2007). Thus, this study aims 
to: (1) determine the T-Hg concentration in 8 species of threadfin bream 
caught during the research survey in different sampling locations in the 
GoT; (2) evaluate the relationship between T-Hg in fish species with fish 
size and trophic levels and; (3) assess the risk associated with human 
dietary intake of T-Hg via threadfin bream consumption. 

2. Materials and methods 

2.1. Collecting sample and preparation 

The collaborative research survey on marine fisheries resources and 
marine environment in the GoT was conducted during 17 August to 18 
October 2018 on board M.V. SEAFDEC-2 (total length = 32.5 m and 
width = 7.2 m). In this survey, a total of 296 individual threadfin breams 
(Nemipterus spp.) were caught at 63 sampling stations using a bottom 
trawl net (9.09 to 19.49 m mouth width and 2 in. net mesh). The towing 
was conducted during daytime at towing speed and depth range be
tween 1.5 and 1.9 m s− 1 and 19.2–76.0 m, respectively. The haul period 
was controlled between 15 and 160 min. After hauling, harvested fish 
were species-separated by staffs from the Department of Fishery (DOF) 
for the fishery resources survey. Then, all fish were ready for sampling. 
To avoid contamination, each individual fish were randomly selected, 
double-wrapped and placed in double plastic zip-lock bags and kept 
frozen until transported back to laboratory. Until the analysis, samples 
were stored in the refrigerator at − 20 ◦C. 

Each fish sample was thawed at room temperature (±3 h), measured 
for morphometric information including length and weight, photo
graphed and re-identified and checked with fish identification refer
ences (Ahmad et al., 2018; Froese and Pauly, 2019) for its feeding habit 
and trophic levels (Table S1). The fish was dissected in the laminar flow 
cabinet. Individually, white tissue was sectioned using ceramic knife and 
homogenized prior placing into the new zip-lock plastic bag. All ho
mogenized samples were stored at − 20 ◦C for further analysis. The knife 
was cleaned and rinsed with Milli-Q ultrapure water and 10% HNO3 
before the next use. 

2.2. Reagent and glassware 

Sub-boiling distillation set up to purify HNO3 65% (Merck, Germany) 

for mercury analysis. Milli-Q ultrapure water (18.2 MΩ-cm) was pre
pared by Millipore Milli-Q lab water system (Merck Millipore, Tokyo, 
Japan). All glassware in this analysis was soaked in 10% (v/v) HNO3 
overnight, rinsed with Milli-Q ultrapure water, and dried on horizontal 
laminar airflow cabinet. Standard solution for T-Hg (1000 mg L− 1) from 
Sigma-Aldrich (Taufkirchen, Germany) were freshly prepared by 
diluting with 3% (w/v) HNO3 to set up the standard curve ranging from 
0.5 ng to 500 ng. 

2.3. Mercury analyses 

Total mercury (T-Hg) in fish tissue was analysed using the direct 
thermal decomposition, amalgamation, and atomic absorption spectro
photometry technique based on the USEPA method 7434 (USEPA, 
1998), using a NIC® mercury analyzer model MA-3000 at the laboratory 
of Coax Group Corporation Ltd. Briefly, about ±100 mg of homogenate 
fresh tissue of known weight (weigh with Sartorius AX224, Sartorius 
group) was placed on a ceramic sampling boat, then, introduced into the 
analyzer. Sample was allowed to dry at 150 ◦C then, decomposed to 
elemental mercury (Hg0) at controlled temperature (200–350 ◦C) under 
continuously oxygen flow (>90 purity). After that, Hg0 vapor was 
trapped at the gold amalgamation unit, then heated to 850 ◦C. Hg0 was 
then released and transferred to a detector and measured for its ab
sorptivity at the wavelength (253.7 nm). The results of T-Hg concen
trations were presented as μg kg− 1 on a wet weight basis. 

2.4. Quality control 

Limit of detection (LOD) and limit of quantitation (LOQ) was 
determined from 3 and 10-times of standard deviation of blank analyses. 
The LOD and LOQ values for mercury analysis were reported at 0.0016 
μg kg− 1 and 0.0050 μg kg− 1, respectively. Blanks and certified reference 
materials (CRMs) namely DORM-4, TORT-3 and BCR-422 were per
formed in each batch of sample analysis. The percent recovery of CRMs 
resulted in between 86.9 and 94.2% (Table S2). These indicated that the 
applied methods for T-Hg analysis were in a satisfactory range with a 
good quality control. For the method precision, about 45% of the sam
ples were analysed with the replication and the percent relative standard 
deviation (% RSD) reported for this applied method was not greater than 
9% (n = 136). 

2.5. Statistical analysis 

All data were calculated using Microsoft Office Excel (2010) and IBM 
SPSS Statistics for Windows (Version 19.0. Armonk, New York: IBM 
Corp). Descriptive statistics were reported for the analysed values 
including average ± standard deviation and ranges. A non-parametric 
(Kruskal-Wallis) test was applied to this study after the results of a 
Shapiro-Wilk test showed a non-normal distribution data set. The 
Spearman correlation (r) test then was then used for the relationship 
study between T-Hg and fish size and trophic level. The significance was 
applied in all cases when p < 0.05. 

2.6. Risk assessment 

Fish consumption contributes to good nutrition and has health 
benefits. However, overconsumption may be linked to health risks 
resulting from the bioaccumulation of toxic substances like mercury. 
Several approaches can be applied to quantify and assess the potential 
risk of Hg for human health including, the estimation of the daily intake 
(EDI), hazard quotient (HQ), and maximum safe daily consumption 
(MSDC). To avoid overconsumption and risk exposure from threadfin 
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breams in the adult population in Thailand, this study predicted the EDI, 
HQ, and MSDC values based on the equations from the U.S. Environ
mental Protection Agency (USEPA, 2000) below. 

Estimated daily intake (EDI), 

EDI =
Cm x FIR x EF x ED

BW x AT 

Risk of T-Hg exposure or hazard quotient (HQ), 

HQ =
EDI
RfD 

Maximum safe daily consumption (MSDC), 

MSDC =
PTDI x BW

Cm 

Where, Cm is a concentration of methylmercury (MeHg) in fish; 
calculated from 93% of T-Hg concentration (Windom and Cranmer, 
1998; Anual et al., 2018). FIR or the daily ingestion rate is accounted for 
0.086 kg person− 1 day− 1 for the Thai population (Needhan and Funge- 
Smith, 2015). EF is the exposure frequency (365 year− 1). ED; the 
exposure duration, calculated as the average lifetime between male and 
female at 72.05 years (Porapakkham et al., 2010). BW; the average body 
weight for adults (56 kg) in Thailand (Mathuramon et al., 2009). AT; the 
average time exposed for non-carcinogenic substances (365 days 
years− 1 × 72.05 years). RfD; the oral reference dose, is equivalent to 0.1 
μg kg− 1 day− 1 for MeHg. PTDI; the provisional tolerable daily intake for 
MeHg, is set by the Joint FAO/WHO Expert Committee on Food Addi
tives (JEFCA, 2007) at value of 0.23 μg kg− 1 bodyweight day− 1. HQ; 
Hazard quotient, a value less than one, indicates that no systemic effect 
is posed to human health in fish consumption population. 

3. Results and discussion 

3.1. The accumulation of T-Hg in threadfin breams 

Total mercury (T-Hg) in 8 species of threadfin breams varied from 
11.3 to 374 μg kg− 1 wet weight with an average of 115 ± 71.1 μg kg− 1 

wet weight (Table 1). The average T-Hg accumulated in threadfin 
breams was in the following order; Nemipterus nemurus > Nemipterus 
tambuloides > Nemipterus japonicus > Nemipterus hexodon > Nemipterus 
nematophorus > Nemipterus furcosus > Nemipterus marginatus > Nem
ipterus peronii (Fig. 1). The Kruskal-Wallis test (Table S3) for 8 species of 
threadfin breams resulted in significant differences of T-Hg among 
species (Chi-Square = 35.2, p < 0.0001). 

In this survey, threadfin breams contained lower T-Hg than some of 
the species reported in other (Table 1). T-Hg contents in N. japonicus 
(NJ), N. marginatus (NM), N. nematophorus (NO) and N. peronii (NP) were 
lower than observed in the upper Andaman Sea (Hantow et al., 2008), 
Persian Gulf (Saei-Dehkordi et al., 2010), Peninsular, Malaysia (Anual 
et al., 2018), and Bangkok markets, Thailand (Unpublished result). On 
the contrary, NJ in the GoT was exhibited higher T-Hg in comparing 
with the results in the Persian Gulf (Agah et al., 2007) and the Andaman 
Sea (Hantow et al., 2008). To compare with the dry weight results from 
Ahmad et al. (2015) study in the Peninsular Malaysia, 77% moisture 
content (Nurnadia et al., 2011) was applied for wet weight conversion 
and all reported species of threadfin breams showed higher T-Hg content 
than in the GoT. This T-Hg variation among different threadfin bream 
species in comparing with other literatures could be explained by fish 
size, feeding habit and habitat, trophic position and degree of mercury 
pollution in each location. 

Fish size and trophic level were considered as the most important 

Table 1 
Summary of T-Hg levels (in μg kg− 1 wet weight) muscle tissue of threadfin bream (Nemipterus spp.) from the Gulf of Thailand and other studies.  

Species Code Location TL ± SEa nb Length (cm) Weight (g) T-Hg (μg kg− 1) References 

Mean ± SD Range Median 

N. furcosus NF Gulf of Thailand 3.7 ±
0.00  

34 9.60–23.2 10.3–133 88.0 ±
56.9 

26.4–255 70.8 This study  

Peninsular, Malaysia   3 18.2–21.4 102–162 – 286–707 494 (Ahmad et al., 2015)c 

N. hexodon NH Gulf of Thailand 3.9 ±
0.30  

8 14.0–23.1 37.2–142 113 ± 113 23.0–282 46.4 This study 

N. japonicus NJ Gulf of Thailand 4.1 ±
0.30  

4 14.2–19.2 32.6–64.9 122 ± 112 48.3–288 75.2 This study  

Persian Gulf, Iran   8 21.0–23.0 104–147 49 ± 25 30–87 – (Agah et al., 2007)  
Andaman Sea   24 17.6–29.9 54.0–200 81 ± 27 55–153 – (Hantow et al., 2008)  
Persian Gulf, Iran   5 25.0–27.0 141–162 175 ± 78 – – (Saei-Dehkordi et al., 

2010)  
Peninsular, Malaysia 4.1 ±

0.76  
11 16.9–29.2 63–212 – 164–929 357 (Ahmad et al., 2015)c 

N. marginatus NM Gulf of Thailand 3.5 ±
0.37  

30 12.8–19.8 19.3–71.3 82.1 ±
52.7 

11.3–192 73.7 This study  

Peninsular, Malaysia   2 23.0–25.5 110–240 – 159–216 188 (Ahmad et al., 2015)c 

N. nematophorus NO Gulf of Thailand 3.8 ±
0.50  

103 11.5–25.5 3.95–172 107 ± 59.1 18.2–287 92.7 This study  

Peninsular, Malaysia   2 16.1–25.6 58–154 – 661–1204 932 (Ahmad et al., 2015)c  

West Peninsular, Malaysia   1 26.0 – – – 645 (Anual et al., 2018)  
Bangkok markets, 
Thailand   

6 24.0–25.0 162–211 320 ± 184 110–597 326 Unpublished resultsc 

N. nemurus NN Gulf of Thailand 4.0 ±
0.66  

31 16.4–30.5 40.1–190 144 ± 85.6 24.6–374 129 This study  

Peninsular, Malaysia   1 17.8 96 – – 229 (Ahmad et al., 2015)c 

N. peronii NP Gulf of Thailand 3.7 ±
0.30  

4 15.5–19.0 39.9–62.4 53.2 ±
20.9 

23.5–70.2 59.5 This study  

Andaman Sea   3 19.1–25.9 89.6–206 80 ± 15 65–95 – (Hantow et al., 2008) 
N. tambuloides NT Gulf of Thailand 4.0 ±

0.69  
82 16.1–29.7 39.5–263 139 ± 74.3 30.9–360 116 This study  

Peninsular, Malaysia 4.0 ±
0.69  

2 17.5–21.4 86–109 – 306–350 328 (Ahmad et al., 2015)c  

a Trophic levels assessed from www.fishbase.org (Froese and Pauly, 2019). 
b Number of individuals tested per species. 
c T-Hg concentration from Ahmad et al. (2015) was converted from dry weight to wet weight according to Nurnadia et al. (2011) using 77% moister. 
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factors influencing Hg accumulation in fish tissues. While fish size is a 
reliable parameters to estimate fish age (Costa et al., 2020; Grgec et al., 
2020), the trophic position in the food webs reflected the degree of Hg 
accumulation in fish (Ali and Khan, 2019). The Spearman correlation 
test between T-Hg and fish length (Fig. 2B) and trophic levels (Fig. 2C) 
has indicated that fish size and trophic level influence the T-Hg accu
mulation in threadfin bream. In this survey, N. tambuloides (NT) and 
N. nemurus (NN) were positioned in the higher trophic levels (4.0). Their 
fish size was also the biggest and contained the highest mean T-Hg. 
While N. marginatus (NM) and N. peronii (NP) were positioned in the 
lower trophic level, they contained the lowest mean T-Hg and had the 
smallest fish size. This result was similar to the Bangkok markets, 
Thailand report (Unpublished result) where the highest T-Hg observed 
in fish positioned in the higher trophic levels e.g., yellowfin tuna 
(Thunnus albacores). The variation of T-Hg with fish size and trophic 
level was also observed in other studies (Ahmad et al., 2015; Azad et al., 
2019; Grgec et al., 2020) where the high trophic levels fish had the 
bigger fish size and the higher tendency to accumulate more level of T- 
Hg. Interestingly, among threadfin beam species observed in the Ahmad 
et al. (2015), the positive relation between the increase in T-Hg content 
with fish size and trophic level were observed except for the 
N. nematophorus (NO). This could be related to the less number of 
samples. 

Since, all threadfin breams are classified as non-migratory demersal 
fish for their feeding habit (Table S1), prey selection (Eryalcin, 2018; 
Froese and Pauly, 2019) and local mercury source (Sirirattanachai and 
Utoomprurkporn, 2005; Liu et al., 2014) may contribute to these dif
ferences in T-Hg content. Specific diet selection (size of prey) has been 
observed among different threadfin bream species. The most piscivorous 
species like N. nemurus (NN) fed mostly on the high trophic positioned 
preys like Nemipterus mesoprion, mantis shrimp, shrimp, and other 
crustaceans (Eryalcin, 2018; Froese and Pauly, 2019). While N. peronii 
(NP) main diet is crustaceans, cephalopods, polychaeta, and smaller fish 
(Froese and Pauly, 2019). These diet selections are suggested to be based 
on their body size (i.e. length) and mouth size (Paul et al., 2017). The 
study of Agusa et al. (2007) in South East Asia and Liu et al. (2014) in 
South China Sea (SCS) suggested the connection of geographic location 
and the Hg content in fish. The human activities in the coastal area of 
SCS indicated as the possible sources for Hg accumulation in fish (Liu 
et al., 2014). 

Moreover, the accumulation of T-Hg in threadfin breams is influ
enced by their habitat, family group, geographic locations (Saei-Deh
kordi et al., 2010; Ahmad et al., 2015; Anual et al., 2018; Azad et al., 
2019) as well as seasonal variation in their environment including 
salinity, dissolved oxygen, total organic carbon and suspended partic
ulate matter and local mercury source (Sirirattanachai and 

Utoomprurkporn, 2005). The application of stable isotope (δ15N and 
δ13C) in the future study is suggested to assist in the estimation of the 
trophic position of threadfin bream and their prey in marine food web in 
the GoT and enable to track the predator and prey relationship more 
precisely (Chouvelon et al., 2018). In turn, this could provide even more 
accurate information on the pathway of T-Hg accumulation and safety 
caution for fish consumption. 

Though, all threadfin bream examined in this survey had T-Hg 
concentration less than 500 μg kg− 1 wet weight or the T-Hg maximum 
concentration allow in fish and fishery products from the standard 
guidelines of the European Commission Regulation (EC, 2006) and 
Ministry Public Health of Thailand (MPH, 2020). This screening result 
indicated the safe consumption of threadfin breams caught in the GoT. 

3.2. Distribution of 8 threadfin bream species in the Gulf of Thailand 
(GoT) 

The GoT was divided into the upper, the middle, and the lower GoT. 
In the middle GoT, the survey was conducted on both in Thai and 
Cambodian waters (Fig. S1). Threadfin bream caught in this research 
survey were examined for the T-Hg distribution patterns over the GoT. 
The average T-Hg concentration in threadfin bream accounted for 60.8 
± 47.9, 121 ± 67.5, 126 ± 76.0 μg kg− 1 wet weight in the upper, the 
middle, and the lower GoT, respectively (Fig. S1). The Kruskal-Wallis 
test showed a significant difference (Chi-Square = 41.8, p < 0.0001) 
of T-Hg in these 3 locations in the GoT (Table S4A). When testing the 
differences of T-Hg between the middle and the lower GoT (Table S4B) 
and between Thai and Cambodian waters (Table S5) with Mann Whitney 
test, the results were not significantly different (p > 0.05). 

The low T-Hg content in threadfin breams often observed in sam
pling stations in the upper GoT and in the near coastline stations. While, 
the higher T-Hg content in threadfin breams were observed in the 
sampling stations in the middle and the lower parts GoT. As aforemen
tioned, threadfin bream is a non-migratory fish, therefore their feeding 
habit near seawater-sediment interface could lead to T-Hg accumulation 
from their prey and environment. The variation in T-Hg in threadfin 
bream could be related to the local mercury sources in the GoT (Yod-In- 
Lom and Doyle, 2002; Cheevaporn and Menasveta, 2003; Thongra-ar 
et al., 2008; Murphy et al., 2009; Pojtanabuntoeng et al., 2011; Guédron 
et al., 2014; Rattanasriampaipong, 2016; Tremlová, 2017; Wor
akhunpiset, 2018; Sompongchaiyakul et al., 2019; Thepanondh and 
Tunlathorntham, 2020). The water circulation pattern in the upper GoT 
dominated by river discharge and was distinguished from the circulation 
in the middle and the lower GOT, whereby are influenced by the South 
China Sea waters (Sirirattanachai and Utoomprurkporn, 2005; Bur
anapratheprat et al., 2016; Asokbunyarat and Sirivithayapakorn, 2020; 

Fig. 1. Mean T-Hg levels in 8 species of threadfin bream (Nemipterus spp.) collected in the Gulf of Thailand. The box represents the 25th and 75th percentiles and the 
horizontal line inside each box represents the 50th percentile. The black cross shows the median values, and the minimum and maximum values are represented by 
the bars at the end of the whiskers. The small circles (o) represent the outliers of T-Hg levels. The black-dashed horizontal line represents the maximum allowance for 
mercury in fish and fishery products by the European Commission Regulation (EC, 2006) and the Ministry of Public Health of Thailand (MPH, 2020). 
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Higuchi et al., 2020). 
The average T-Hg of each threadfin bream species by station was 

displayed in the T-Hg classification plot (Fig. 3). For N. furcosus (NF), 
this species was found in sampling locations near the river runoff in the 
upper GoT, the middle GoT in Cambodian waters, and the lower GoT 
near Songkhla Lake. Among NF caught stations, Cambodian waters 
showed relatively higher T-Hg in samples. Whereas N. marginatus (NM) 
and N. nemurus (NN) were found to be distributed only in specific 
location i.e. the middle GoT in Cambodian waters and the lower GoT, 
N. nematophorus (NO) and N. tambuloides (NT) were found to be 
distributed in all areas of the GOT. Still, the higher T-Hg tended to be 
observed in sampling stations in the middle GoT. The rarest caught 
species in this survey were N. hexodon (NH), N. japonicus (NJ) and 

N. peronii (NP) which were reported in stations near coastal areas. 
In the middle and the lower GoT, higher T-Hg content in threadfin 

breams was observed, especially in NM, NO and NT. This could have 
been elucidated by human activities in the middle GoT such as petro
leum and gas exploration and production. Although, mercury concen
tration in seawater did not exceed the standard guidelines from the 
Thailand seawater quality (100 ng L− 1), stations in the middle and 
offshore showed high mercury contents which ranged from 0.2 to 33.1 
and 0.1 to 47.7 ng L− 1 in surface and bottom seawater, respectively 
(Sompongchaiyakul and Sanesith, 2013). Surface sediment (0–5 cm) in 
the lower GoT has been reported to have an increase in T-Hg overtime 
(2003 to 2013) from 24.4 ± 9.00 to 41.4 ± 15.3 μg kg− 1 in concordance 
with the intensity of the petroleum and gas operations in the middle of 
the Gulf (Sompongchaiyakul et al., 2019). In addition, seawater and 
sediment supply from rivers in the southern part of Thailand and 
Malaysia rivers plus the atmospheric deposition and seawater from 
adjacent areas may play a part in contribution, transportation, and 
distribution mercury content in the middle and lower GoT (Fu et al., 
2010; Hajeb et al., 2012; Buranapratheprat et al., 2016; Liu et al., 2016). 
Accordingly, this relatively higher mercury in seawater and sediment 
may lead to bioaccumulation in benthic organisms (Thongra-Ar and 
Parkpian, 2002) and transfer to higher trophic positioned organisms in 
the GoT like observed in NM, NO and NT. Particularly high T-Hg in NN 
in Cambodian waters may relate also from locally runoff and discharge 
from several human activities. Toxic waste dumping in Sihanoukville, 
Cambodia from Taiwan Ship in 1998 was an example of such an event 
probably allows Hg-contained waste runoff and exposed both residents 
and the environment to Hg (Hess and Frumkin, 2000). 

3.3. Risk assessment 

The risk of mercury exposure from fish consumption is one con
cerning factor in balancing food nutrition. To estimate mercury expo
sure for consumption threadfins breams caught in the GoT, the 
estimation of the daily intake (EDI), hazard quotient (HQ) and 
maximum safe daily consumption (MSDC) were evaluated using the 
mean concentration of mercury of each species for calculation. 

The EDI value was compared with the provisional tolerable daily 
intake (PTDI) standard guideline (JEFCA, 2007). All EDI of 8 species 
were lower than the PTDI values or less than 0.23 μg kg− 1 bodyweight 
day− 1. The highest EDI was exhibited in N. nemurus (NN) and 
N. tambuloides (NT) at 0.07 μg kg− 1 bodyweight day− 1, while the lowest 
was in N. peronii (NP) at 0.03 μg kg− 1 bodyweight day− 1 (Table S6, 
Fig. 4A). The HQ was reported from 0.25 in NP to 0.69 in NN and NT and 
none of them exceed the HQ limit (HQ > 1). The EDI and HQ estimation 
indicates that consumption threadfin breams caught in the GoT does not 
pose any additional health risks for T-Hg exposure in adults. 

To protect dietary Hg exposure associated with fish consumption for 
adults, the value of maximum safe daily consumption (MSDC) for each 
species was calculated (Table S6, Fig. 4B). The result showed that fish 
with low T-Hg like N. peronii (NP) could be consumed up to 259 g per
son− 1 day− 1 while higher T-Hg fish like N. nemurus (NN) and 
N. tambuloides (NT), should not be consumed more than 95.3 g person− 1 

day− 1. To minimalize high mercury exposure for the human body, adults 
should consume less than the calculated MSDC of each species. How
ever, in serving table, it is not possible to recognize the differences 
among 8 species of threadfin bream. Thus, the recommend MSDC of 
threadfin breams caught in GoT should follow the MSDC of NN and NT. 
One strategy to reduce mercury exposure via fish consumption is to 
consume fish of various species. The best fish choice is small-size species 
positioned at a lower trophic level. 

4. Conclusion 

Eight species of threadfin breams in the Gulf of Thailand (GoT) 
sampling from different locations during the research survey exhibited 

Fig. 2. Position of species in relation to their value: A) mean length against 
mean weight; B) mean T-Hg levels against length; and C) mean T-Hg levels 
against mean trophic levels. (Error bars represent the standard deviation). NF – 
N. furcosus (n = 34), NH – N. hexodon (n = 8), NJ – N. japonicus (n = 4), NM – 
N. marginatus (n = 30), NO – N. nematophorus (n = 103), NN – N. nemurus (n =
31), NP – N. peronii (n = 4), NT – N. tambuloides (n = 82). 
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Fig. 3. Classification plot of T-Hg concentrations (μg kg− 1 wet weight) in 8 species of threadfin bream (Nemipterus spp.) caught during the research survey in the Gulf 
of Thailand (GoT) in 2018. 
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the variation in T-Hg contents by species and locations. T-Hg in fish was 
ranged from 11.3 to 374 μg kg− 1 wet weight. The mean T-Hg were 
significantly different among species in the following order; N. nemurus 
> N. tambuloides > N. japonicus > N. hexodon > N. nematophorus > N. 
furcosus > N. marginatus > N. peronii. Fish size, feeding habit and habitat, 
and trophic position of each threadfin bream species were significantly 
determined its T-Hg variation. By location in the GoT, lower content of 
T-Hg was found in samples from the upper GoT than those from the 
middle GoT and lower GoT and might be influenced by locally sources e. 
g., gas/petroleum operation and river run off. Though, all threadfin 
breams caught contained T-Hg level less than the maximum concen
tration allowed in fish and fishery products. Consumption risk was 
calculated and the maximum safe daily consumption (MSDC) recom
mended for threadfin bream caught in the GoT was 95.3 g person day− 1. 
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